

Empirical Bayes Method for Short-Term Time Series Forecasting

Munther Dahleh ^{1 2 3}, Yury Polyanskiy ^{1 2 3}, Anzo Teh ^{1 2}

¹EECS ²LIDS ³IDSS

Prediction Task

Given observations of n distributionally similar time series X_{it} , $1 \le i \le n$, $1 \le t \le k$, predict $X_{i(k+1)}$ for each $i = 1, \dots, n$ that minimizes the following L1 loss:

$$\sum_{i=1}^{n} \mathbb{E}_{X_{i(k+1)}|X_{i1},\cdots,X_{ik}}[|\hat{X}_{i(k+1)} - X_{i(k+1)}|] \tag{1}$$

Modeling of Data

We model each $X_{it} \sim \mathsf{Lap}(\theta_i, 1)$, with $\theta_i \stackrel{\mathsf{iid}}{\sim} \pi$.

$$p(X_{it}|\theta_i) = \frac{1}{2}\exp(-|X_{it} - \theta_i|) \qquad p_{\pi}(X_{it}) = \int_{\theta_i} p(X_{it}|\theta_i) d\pi(\theta_i)$$

Figure 1. Graphical Model When n = k = 2

Baseline

All θ_i 's independent (no π) \Rightarrow predict MLE of Laplace / sample median:

$$X_{i(k+1)} = \mathsf{Median}(X_{i1}, \cdots, X_{ik})$$

Related Work

Parametric Methods

[1] (A2-CLPM), [2] (follow up on convergence), [5] (Gaussian-Laplace mixture).

Restricted to limited number of components.

Non-Parametric ML Estimators

General NPMLE: [3] (self-consistency property).

Gaussian mixture: [4] (statistical degree of NPMLE in $\Theta(\log n)$ for subgaussian π).

Laplace mixture: [6] (NPMLE is directly solvable for sparse observations).

Non-Parametric Maximum Likelihood Estimator

We estimate π by maximizing the following likelihood function:

$$\hat{\pi} := \arg\max_{\pi} = \sum_{i=1}^{n} \log \left(\int_{\theta_i} \prod_{t=1}^{k} p_{\pi}(X_{it}|\theta_i) d\pi(\theta_i) \right) \tag{6}$$

We establish the following theorem, extended from [6].

Theorem. Under mild conditions, $\hat{\pi}$ is supported only on the observations X_{it} 's.

- (2) reduced to a finite-dimensional problem;
- solve iteratively via convex optimization (e.g. the EM algorithm).

Empirical Bayes Predictor

Take partial derivatives with respect to (1) \Rightarrow L1 loss minimized when $\hat{X}_{i(k+1)}$ satisfy:

$$\mathbb{P}_{X_{i(k+1)}|X_{i1},\cdots,X_{ik}}[X_{i(k+1)} < \hat{X}_{i(k+1)}] = \mathbb{P}_{X_{i(k+1)}|X_{i1},\cdots,X_{ik}}[X_{i(k+1)} > \hat{X}_{i(k+1)}]$$
(3)

I.e. $\hat{X}_{i(k+1)}$ is the posterior median given observations X_{i1}, \cdots, X_{ik} based on estimated prior $\hat{\pi}$. Posterior density of $X_{i(k+1)}$:

$$p(X_{i(k+1)}|X_{i1}, \dots, X_{ik}) = \frac{\int_{\theta_i} p(X_{i(k+1)}|\theta_i) \prod_{t=1}^k p(X_{it}|\theta_i) d\hat{\pi}(\theta_i)}{\int_{\theta_i} \prod_{t=1}^k p(X_{it}|\theta_i) d\hat{\pi}(\theta_i)}$$

$$= \frac{1}{2} \cdot \frac{\int_{\theta_i} \exp(-\sum_{t=1}^{k+1} |X_{it} - \theta_i|) d\hat{\pi}(\theta_i)}{\int_{\theta_i} \exp(-\sum_{t=1}^k |X_{it} - \theta_i|) d\hat{\pi}(\theta_i)}$$

Hence (3) can also be expressed as

$$\int_{-\infty}^{\hat{X}_{i(k+1)}} \int_{\theta_{i}} \exp\left(-\sum_{t=1}^{k+1} |X_{it} - \theta_{i}|\right) d\hat{\pi}(\theta_{i}) dX_{i(k+1)}$$

$$= \int_{\hat{X}_{i(k+1)}}^{\infty} \int_{\theta_{i}} \exp\left(-\sum_{t=1}^{k+1} |X_{it} - \theta_{i}|\right) d\hat{\pi}(\theta_{i}) dX_{i(k+1)}$$

Experimental Setup and Results

Currency Exchange Rates Against Euro

- 1. Data range: 1999 2022 (daily).
- 2. Number of currency, n = 2 for each time window.
- 3. Window size: k = 5.
- 4. Prediction interest: log returns.

S&P 500 Stock Returns

- 1. Data range: 2017 2019 (daily).
- 2. Number of stocks, n: $\simeq 500$ for each time window.
- 3. Window size: k = 5.
- 4. Prediction interest: log returns (using adjusted closing for each day).

Evaluation Procedure

- 1. Partition dataset into sliding windows, length k each;
- 2. Get MAE of running sample median vs NPMLE on each time window;
- 3. Report 95% confidence interval of MAEs across all time windows.

Results

Datasets	Median	NPMLE + EB
Exchange Rates S&P 500	$(4.309 \pm 0.059) \times 10^{-3}$ $(1.231 \pm 0.045) \times 10^{-2}$	$(3.927 \pm 0.057) \times 10^{-3}$ $(1.122 \pm 0.046) \times 10^{-2}$
300	$(1.201 \pm 0.040) \times 10$	$(1.122 \pm 0.040) \times 10$

Table 1. The 95% Confidence Interval of MAE Achieved Across All Time Windows

Next Steps / Ongoing

- 1. Incorporate other related information for each time series to improve performance.
- 2. Establish statistical bounds on error bounds of Laplace mixture.

Experimental Plots (MAE)

Figure 2. MAE Distribution on Exchange Rates Dataset

Figure 3. MAE Distribution on S&P 500 Dataset

References

[1] Zakiah I. Kalantan and Faten Alrewely.

A 2-Component Laplace Mixture Model: Properties and Parametric Estimations. *Mathematics and Statistics*, 7(4A):9–16, September 2019. Publisher: Horizon Research Publishing.

[2] Zakiah I. Kalantan, Faten Alrewely, and Kamarul Ariffin Mansor.

Study on the Convergence Behavior of Expectation Maximization Algorithm for Laplace Mixture Model. 3:35–45, September 2019.

[3] Nan Laird.

Nonparametric Maximum Likelihood Estimation of a Mixing Distribution. Journal of the American Statistical Association, 73(364):805–811, 1978. Publisher: [American Statistical Association, Taylor & Francis, Ltd.].

[4] Yury Polyanskiy and Yihong Wu.

Self-regularizing Property of Nonparametric Maximum Likelihood Estimator in Mixture Models. arXiv:2008.08244 [math, stat], September 2020. arXiv: 2008.08244.

[5] A. J. Scallan.

Maximum Likelihood Estimation for a Normal/Laplace Mixture Distribution. *Journal of the Royal Statistical Society. Series D (The Statistician)*, 41(2):227–231, 1992.

Publisher: [Royal Statistical Society, Wiley].

[6] Gilbert G. Walter and Julius R. Blum.

A Simple Solution to a Nonparametric Maximum Likelihood Estimation Problem.

The Annals of Statistics, 12(1):372–379, March 1984.

Publisher: Institute of Mathematical Statistics.

SDS Conference, 2022