Prediction Task

Given observations of n distributionally similar time series X,;;, 1 <1 < n, 1 <t < k, predict

Xi(k41) foreach i =1, - -, n that minimizes the following L1 loss:
n
> Ex, e X XU Kih41) = X
i=1
Modeling of Data
We model each X;; ~ Lap(6;,1), with 6; d .
1
POXl6:) = esp(—1Xi = 6)  pelXit) = [ p(Xil61)dn(6)
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Figure 1. Graphical Model Whenn = k£ =2

Baseline

All 9,’s independent (no 7) = predict MLE of Laplace / sample median:
Xi(k+1) = Median(X;y, -, Xji)

Related Work

Parametric Methods

[1] (A2-CLPM), [2] (follow up on convergence), [5] (Gaussian-Laplace mixture).

= Restricted to limited number of components.

Non-Parametric ML Estimators

General NPMLE: [3] (self-consistency property).

Gaussian mixture: [4] (statistical degree of NPMLE in ©(log n) for subgaussian ).

Laplace mixture: [6] (NPMLE is directly solvable for sparse observations).

Non-Parametric Maximum Likelihood Estimator

We estimate m by maximizing the following likelihood function:

n k
T .= argmax = Z log /9 pr(Xit‘ei)dW(ei)
d i=1 '

ti=1

We establish the following theorem, extended from [6].

Theorem. Under mild conditions, 7 is supported only on the observations X;;'s.

= (2) reduced to a finite-dimensional problem;
= solve iteratively via convex optimization (e.g. the EM algorithm).

(1)
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Empirical Bayes Predictor

Take partial derivatives with respect to (1) = L1 loss minimized when )A(Z(,ﬁl) satisfy:

IP)Xi(kJrl)‘Xﬂ,--- ,Xik[Xi<k+1) < XZ(k‘—l—l)] — PXi(k+1)|Xi17"' ,Xz'k[Xi(k—l—l) > XZ(]C—I—l)] (3)
l.e. )A(Z(,Hl) is the posterior median given observations X;q,--- , X;;. based on estimated prior 7.

Posterior density of X; ;. :
Jo, P(Xigr1)|6) T p(Xitl03)d(6)
p(Xi(k—l—l)‘Xﬂa T 7XZ]€) — L R
Jo, TTi=1 p(Xi|0;)d7 (6;)
B 1 fgi exp(— Zfif ’Xz't — QiDdﬁ(@i)
2 Jpyexp(= 2 [ Xie — 0 (6)

Hence (3) can also be expressed as

Xz'(kﬂ) ktl

/ /ap—ZwWw\MWMmm
—oo Jb t=1
k+1

0
_ / / exp [ = | Xy — i A7 (0;)dX; (j11)
Xi(k+1) 7/ 0i t=1

Experimental Setup and Results

Currency Exchange Rates Against Euro

1. Data range: 1999 - 2022 (daily).
2. Number of currency, n: ~ 32 for each time window.

3. Window size: k£ = b.
4. Prediction interest: log returns.

S&P 500 Stock Returns

1. Data range: 2017 - 2019 (daily).

2. Number of stocks, n: ~ 500 for each time window.

3. Window size: k£ = 5.

4. Prediction interest: log returns (using adjusted closing for each day).

Evaluation Procedure

1. Partition dataset into sliding windows, length k each;
2. Get MAE of running sample median vs NPMLE on each time window;
3. Report 95% confidence interval of MAEs across all time windows.

Results

Datasets Median NPMLE + EB

Exchange Rates| (4.309 & 0.059) x 1073 (3.927 4 0.057) x 10~3
S&P 500 | (1.23140.045) x 1072| (1.122 + 0.046) x 10~2

Table 1. The 95% Confidence Interval of MAE Achieved Across All Time Windows

Next Steps /7 Ongoing

1. Incorporate other related information for each time series to improve performance.
2. Establish statistical bounds on error bounds of Laplace mixture.
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Experimental Plots (MAE)
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Figure 2. MAE Distribution on Exchange Rates Dataset
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Figure 3. MAE Distribution on S&P 500 Dataset
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